Homework Assignment No. 1 Due 10:10am, March 17, 2010

Reading: Strang, Chapters 1 and 2.
Problems for Solution:

1. (a) Find the pivots and the solutions for both systems:

$$
\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
0 & 1 & 2 & 1 \\
0 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
5
\end{array}\right] \text { and }\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
5
\end{array}\right]
$$

(b) If you extend (a) following the $1,2,1$ pattern or the $-1,2,-1$ pattern, what is the fifth pivot? What is the nth pivot?
2. Find the triangular matrix \boldsymbol{E} that reduces "Pascal matrix" to a smaller Pascal:

$$
\boldsymbol{E}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
1 & 3 & 3 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 2 & 1
\end{array}\right]
$$

Which matrix \boldsymbol{M} reduces Pascal all the way to \boldsymbol{I} ?
3. Find \boldsymbol{A}^{-1} and \boldsymbol{B}^{-1} (if they exist) by the Gauss-Jordan method:

$$
\boldsymbol{A}=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] \text { and } \boldsymbol{B}=\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]
$$

4. (a) Find \boldsymbol{A}^{-1} :

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & -1 & 1 & -1 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(b) Extend \boldsymbol{A} in (a) to a 5×5 "alternating matrix" and guess its inverse; then multiply to confirm.
5. Tridiagonal matrices have zero entries except on the main diagonal and the two adjacent diagonals. Factor these into $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$ and $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$:

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right] \text { and } \boldsymbol{A}=\left[\begin{array}{ccc}
a & a & 0 \\
a & a+b & b \\
0 & b & b+c
\end{array}\right]
$$

6. If $\boldsymbol{A}=\boldsymbol{L}_{1} \boldsymbol{D}_{1} \boldsymbol{U}_{1}$ and $\boldsymbol{A}=\boldsymbol{L}_{2} \boldsymbol{D}_{2} \boldsymbol{U}_{2}$, where the \boldsymbol{L} 's are lower triangular with unit diagonal, the \boldsymbol{U} 's are upper triangular with unit diagonal, and \boldsymbol{D} 's are diagonal matrices with no zeros on the diagonal, prove that $\boldsymbol{L}_{1}=\boldsymbol{L}_{2}, \boldsymbol{D}_{1}=\boldsymbol{D}_{2}$, and $\boldsymbol{U}_{1}=\boldsymbol{U}_{2}$.
(a) Derive the equation $\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2} \boldsymbol{D}_{2}=\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}$ and explain why one side is lower triangular and the other side is upper triangular. (You may use the fact that the \boldsymbol{L} 's and \boldsymbol{U} 's are invertible.)
(b) Compare the main diagonals in that equation, and then compare the off-diagonals.
7. If \boldsymbol{A} and \boldsymbol{B} are symmetric matrices, which of these matrices are certainly symmetric? (You need to justify your answer.)
(a) $\boldsymbol{A}^{2}-\boldsymbol{B}^{2}$.
(b) $(\boldsymbol{A}+\boldsymbol{B})(\boldsymbol{A}-\boldsymbol{B})$.
(c) $\boldsymbol{A B} \boldsymbol{A}$.
(d) $\boldsymbol{A B} \boldsymbol{A} \boldsymbol{B}$.
8. Factor the following matrices into $\boldsymbol{P} \boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$. Also factor them into $\boldsymbol{A}=\boldsymbol{L}_{1} \boldsymbol{P}_{1} \boldsymbol{U}_{1}$.

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 4 & 1 \\
1 & 1 & 3
\end{array}\right] \quad \text { and } \boldsymbol{A}=\left[\begin{array}{lll}
0 & 4 & 5 \\
0 & 1 & 2 \\
2 & 1 & 1
\end{array}\right]
$$

