Chi-chao Chao

EE 2030 Linear Algebra Spring 2010

Homework Assignment No. 1 Due 10:10am, March 17, 2010

Reading: Strang, Chapters 1 and 2.

Problems for Solution:

1. (a) Find the pivots and the solutions for both systems:

[2]	1	0	0	1	$\begin{bmatrix} x \end{bmatrix}$		[0]		[2	-1	0	0 -	$] \begin{bmatrix} x \end{bmatrix}$	1	[0]	
1	2	1	0		y	=	0	1	-1	2	-1	0	y		0	
0	1	2	1		\ddot{z}		0	and	0	-1	2	-1		=	0	•
0	0	1	2		t		5			0	-1	2	$\begin{bmatrix} t \end{bmatrix}$		5	

- (b) If you extend (a) following the 1, 2, 1 pattern or the -1, 2, -1 pattern, what is the fifth pivot? What is the *n*th pivot?
- 2. Find the triangular matrix \boldsymbol{E} that reduces "Pascal matrix" to a smaller Pascal:

$$\boldsymbol{E} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}.$$

Which matrix M reduces Pascal all the way to I?

3. Find A^{-1} and B^{-1} (if they exist) by the Gauss-Jordan method:

$$\boldsymbol{A} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \text{ and } \boldsymbol{B} = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}.$$

4. (a) Find A^{-1} :

$$\boldsymbol{A} = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

- (b) Extend \mathbf{A} in (a) to a 5×5 "alternating matrix" and guess its inverse; then multiply to confirm.
- 5. Tridiagonal matrices have zero entries except on the main diagonal and the two adjacent diagonals. Factor these into $\mathbf{A} = \mathbf{L}\mathbf{U}$ and $\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^{T}$:

$$\boldsymbol{A} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \text{ and } \boldsymbol{A} = \begin{bmatrix} a & a & 0 \\ a & a+b & b \\ 0 & b & b+c \end{bmatrix}.$$

- 6. If $\mathbf{A} = \mathbf{L}_1 \mathbf{D}_1 \mathbf{U}_1$ and $\mathbf{A} = \mathbf{L}_2 \mathbf{D}_2 \mathbf{U}_2$, where the \mathbf{L} 's are lower triangular with unit diagonal, the \mathbf{U} 's are upper triangular with unit diagonal, and \mathbf{D} 's are diagonal matrices with no zeros on the diagonal, prove that $\mathbf{L}_1 = \mathbf{L}_2$, $\mathbf{D}_1 = \mathbf{D}_2$, and $\mathbf{U}_1 = \mathbf{U}_2$.
 - (a) Derive the equation $\boldsymbol{L}_1^{-1}\boldsymbol{L}_2\boldsymbol{D}_2 = \boldsymbol{D}_1\boldsymbol{U}_1\boldsymbol{U}_2^{-1}$ and explain why one side is lower triangular and the other side is upper triangular. (You may use the fact that the \boldsymbol{L} 's and \boldsymbol{U} 's are invertible.)
 - (b) Compare the main diagonals in that equation, and then compare the off-diagonals.
- 7. If A and B are symmetric matrices, which of these matrices are certainly symmetric? (You need to justify your answer.)
 - (a) $A^2 B^2$.
 - (b) (A + B)(A B).
 - (c) **ABA**.
 - (d) **ABAB**.
- 8. Factor the following matrices into PA = LU. Also factor them into $A = L_1P_1U_1$.

$$\boldsymbol{A} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 1 \\ 1 & 1 & 3 \end{bmatrix} \text{ and } \boldsymbol{A} = \begin{bmatrix} 0 & 4 & 5 \\ 0 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix}.$$